
ASYMPTOTIC-NUMERICAL STUDY OF SUPERSENSITIVITY FORGENERALIZED BURGERS EQUATIONSMARC GARBEY� AND HANS G. KAPERyAbstract. This article addresses some asymptotic and numerical issues related to the solution ofBurgers' equation,�"uxx+ut+uux = 0 on (�1;1), subject to the boundaryconditions u(�1) = 1+�,u(1) = �1, and its generalization to two dimensions,�"�u+ut+uux+uuy = 0 on (�1; 1)�(��; �),subject to the boundary conditions ujx=1 = 1 + �, ujx=�1 = �1, with 2� periodicity in y. Theperturbation parameters � and " are arbitrarily small positive and independent; when they approach0, they satisfy the asymptotic order relation � = Os(e�a=") for some constant a 2 (0;1).The solutions of these convection-dominated viscous conservation laws exhibit a transition layerin the interior of the domain, whose position as t! 1 is supersensitive to the boundary perturbation.Algorithms are presented for the computation of the position of the transition layer at steady state.The algorithms generalize to viscous conservation laws with a convex nonlinearity and are scalablein a parallel computing environment.AMS subject classi�cations. Primary 35B25, 35B30; Secondary 35Q53, 65M55Key words. Asymptotic analysis, domain decomposition, Burgers' equation, viscous conserva-tion laws, transition layers, supersensitivity1. Introduction. In this article we address some asymptotic and numerical is-sues related to the solution of Burgers' equation,�"uxx + ut + uux = 0 on (�1; 1); u(�1) = 1 + �; u(1) = �1;(1)and its generalization to two dimensions,�"�u+ut+uux+�uuy = 0 on (�1; 1)�(��; �); ujx=�1 = 1+�; ujx=1 = �1:(2)In the latter case, we assume periodicity (period 2�) in the second coordinate (y). Theperturbation parameters � and " are arbitrarily small positive; they are independent,but when they approach 0, they satisfy the asymptotic order relation� = Os(e�a=") as �; " # 0;(3)for some constant a 2 (0; 1) which does not depend on � or ". This asymptotic relationimplies that � is transcendentally small (in the sense of asymptotic analysis) comparedwith ", but � dominates e�1=" as " # 0. (See [1, 2, 3, 4, 5] for de�nitions and basicconcepts of asymptotic analysis.)If " = 0, the solution of (1) develops a shock (discontinuity) in �nite time, evenwhen the initial data are smooth [6, 7]. The perturbation introduced by a nonzero" models the presence of viscosity, which tends to smooth the discontinuity [8, 9].Instead of a shock, one has a transition layer|a region of rapid variation, whichextends over a distance O(") as " # 0. The position of the transition layer varieswith time, and its eventual location at steady state is extremely sensitive to the� CDCSP-ISTIL, Universit�e Claude Bernard Lyon 1, 69622 Villeurbanne cedex, France(garbey@cdcsp.univ-lyon1.fr). Supported by the Fondation Cromey-le-Bas under contract BS-95-2. y Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4801, USA (kaper@mcs.anl.gov). Supported by the Mathematical, Information, and ComputationalSciences Division subprogram of Advanced Scienti�c Computing Research, U.S. Department of En-ergy, under contract W-31-109-Eng-38. 1



2 MARC GARBEY AND HANS G. KAPERboundary data. In fact, even the transcendentally small perturbation � leads to ameasurable (that is, order one) e�ect on the eventual location of the transition layer.This phenomenon, known as supersensitivity, was �rst observed by Lorentz [10]. Ithas been studied extensively for Burgers' equation and more general viscous conser-vation laws in one dimension by Kreiss and Kreiss [11], Kreiss [12], Laforgue andO'Malley [13, 14, 15, 16, 17, 18], and Reyna and Ward [19, 20, 21].An example from combustion theory shows that supersensitivity is of more thanmathematical signi�cance. A simple model of 
ame propagation in gaseous fuelsinvolves a system of two coupled convection-di�usion equations, one for the tempera-ture of the mixture, another for the concentration of the reaction-limiting componentin the mixture [22, x 3.2]. If one ignores exponentially small perturbations in thedata, one �nds that the Lewis number L, which is a measure for the ratio of heatand mass transfer in the mixture, has no e�ect on the location of the combustionfront. Yet, numerical computations show that this location is very sensitive|in fact,supersensitive|to the value of L.Although the phenomenon of supersensitivity is fairly well understood theoreti-cally, at least for one-dimensional problems, the numerical solution of such problemsstill poses formidable challenges, especially in more than one dimension. The meth-ods that have been proposed in the numerical literature for singularly perturbedboundary-value problems (see, for example, [23]) tend to focus on uniform approxi-mations or �nite elements with special features, not on the supersensitive dependenceof the transition layer on the boundary data. On the other hand, the algorithmswe propose are designed speci�cally to capture the phenomenon of supersensitivity.They use the fact that the solution approaches a certain pro�le as the perturbationparameters approach zero and focus on the computation of the corrections.Our ultimate goal is to develop algorithms for multidimensional problems thatare, �rst of all, suitable for long-time integration, so stable steady states can be com-puted with con�dence; second, extremely accurate in space, so the eventual locationof transition layers can be predicted with accuracy; and third, scalable in a multi-processing environment, so large-scale problems can be solved in a reasonable lengthof time. Although we discuss only Burgers' equation and its generalization to twodimensions, the algorithms are not restricted by the special form of the nonlinearity.In x 2 we consider Burgers' equation. We propose a simple algorithm that e�ec-tively captures the supersensitive location of the transition layer at steady state. Westress the importance of the regions outside the transition layer, where the solutiondoes not yet deviate appreciably from the boundary values. In x 3 we address thegeneralized Burgers equation in two dimensions. We show through a formal asymp-totic analysis that the location of the transition layer may vary in the direction ofperiodicity (y), but the transition layer is essentially 
at, and only its average position(averaged over y) depends supersensitively on the small parameters. We then developan algorithm that e�ectively approximates the transition layer.2. One-Dimensional Case. We begin by considering Eq. (1),�"uxx + ut + uux = 0 on (�1; 1); u(�1) = 1 + �; u(1) = �1:(4)As shown by Laforgue and O'Malley [16], the solution approaches a certain pro�lefunction as " # 0, u(x; t) = tanh � + e�a="u1(�; �) + : : : ;(5)



SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 3where � = x� x�(�)" ; � = te�a=":(6)The hyperbolic tangent incorporates a transition layer centered at x�, which connectsthe limiting values �1 at �1. Note that these limiting values are transcendentallyclose to the prescribed boundary values 1+ � and �1 of u at �1 and 1. The positionof the transition layer varies on a transcendentally slow time scale; if � = 2be�a=", itslimit as � !1 is x�as = 1� a+ " ln b:(7)The important points to observe are that, �rst, the solution u approaches a certain pro-�le function as " # 0; second, the accurate determination of the steady-state positionof the transition layer requires long-term integration; and, third, a transcendentallysmall perturbation of the boundary data has a measurable e�ect on the location ofthe transition layer.The asymptotic analysis has been generalized to more general nonlinearities byLaforgue and O'Malley [17, 18] and Reyna and Ward [19], with similar results. One�nds a limiting pro�le, which generalizes the hyperbolic tangent function, and a transi-tion layer which moves on a transcendentally slow time scale to a steady-state position.This position depends supersensitively on the boundary perturbation. Whenever thissituation arises, appropriate variants of the following algorithms can be developed.2.1. Spatial Approximation. To approximate the solution in space, we usea domain decomposition method with two non-overlapping subdomains, where theinterface is located approximately at the center of the transition layer, an adaptivepseudo-spectral method on each subdomain, and collocation based on Tchebychevpolynomials, where the collocation points are concentrated in the transition layer.The algorithm is standard and has been described elsewhere [24, 25, 26, 27, 28]; wesummarize it here only for completeness.Let x� 2 (�1; 1) denote the (approximate) position of the center of the transitionlayer; x� varies in time (t), but since t enters only as a parameter in the discussion ofthe spatial approximation, we do not write it explicitly. We decompose,
1 = (�1; x�); 
2 = (x�; 1);(8)and map each of the subdomains 
1 and 
2 linearly onto (�1; 1),g1 : y 2 (�1; 1) 7! x = g1(y) = �1 + 12(x� + 1)(y + 1) 2 
1;g2 : y 2 (�1; 1) 7! x = g2(y) = 1� 12(1� x�)(1 � y) 2 
2:The restrictions of u to 
1 and 
2 exhibit boundary layer behavior near x�. The pointx = x� corresponds to y = 1 under g1 and to y = �1 under g2. To concentrate thecollocation points near x�, we de�ne a one-parameter family of nonlinear mappingsof the interval (�1; 1) onto itself,f1(� ; �) : s 2 (�1; 1) 7! y = f1(s; �) = 1� (4=�)arctan �� tan 14 (1� s)�� 2 (�1; 1);f2(� ; �) : s 2 (�1; 1) 7! y = f2(s; �) = �1 + (4=�)arctan �� tan 14 (s + 1)�� 2 (�1; 1):



4 MARC GARBEY AND HANS G. KAPERIf the parameter � is small, f1 concentrates points near 1 and f2 concentrates pointsnear �1. Concentrating points near critical points is the computational analog ofcoordinate stretching in asymptotic analysis. The choice of � can be optimized bymeans of a priori estimates [24, 25]; we usually take � = "1=2 [27]. The compositemaps, hi(� ;�) = gi(� ) � fi(� ; �); i = 1; 2;are one-to-one from (�1; 1) onto 
i; we denote their inverses by h�1i (� ;�), i = 1; 2.We look for the solution of Eq. (4) by approximating locally on each of the sub-domains 
1 and 
2 and imposing C1 continuity at x�. If U denotes the globalapproximation, thenU (x) = Ui(x) for x 2 
i; U 2 C1([�1; 1]):The local approximations consist of �nite sums of Tchebychev polynomials,Ui(x) = N�1Xj=0 aijTj(h�1i (x;�)); x 2 
i; i = 1; 2; Tj(cos �) = cos(j�); � = �=N:2.2. Integration for Times of Order One. For short-time integration it suf-�ces to combine a one-step forward Euler approximation with an implicit treatmentof the second-order spatial derivative and an explicit treatment of the nonlinear term.Starting with an approximate solution U0 = U (� ; t0) at time t0, we identify thepoint x� = x�(t0) with the location of the zero of U0, partition the domain in twosubdomains, and select the collocation points. Fixing this con�guration temporarily,we compute a sequence fUn : n = 1; 2 : : :g of successive approximations Un using thealgorithm �"D2Un + Un � Un�1�t + Un�1DUn�1 = 0; n = 1; 2; : : : :(9)The symbol D represents the pseudo-spectral di�erentiation operator in physicalspace [29]. The time step �t is constant, so Un is the approximate solution of theboundary-value problem (1) at t0 + n�t. The algortithm (9) is nonconservative.When the location of the zero of Un has moved over a distance ", we suspend thealgorithm (9). We shift x� to the current location of the zero, recon�gure the partition,update the collocation points, replace U0 by the values at the new collocation points(using interpolation if necessary), and continue the algorithm (9). We repeat thisprocess until the steady state is reached. The change in the location of the zero of thecomputed approximation becomes smaller as time progresses, so the same collocationcon�guration serves for longer and longer time intervals.The algorithm (9) requires the solution of Un from the equationAUn = Un�1 + (�t)Un�1DUn�1:(10)The matrix A, which is order 2N � 1, has a block structure,A = 0@A1 b1at1 c bt2a2 A21A :



SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 5A1 and A2 are square matrices of order N � 1; a1, a2, b1, and b2 vectors of lengthN �1; c is a constant. The center row accounts for the C1 continuity at the interface.This block structure allows a solution of the system (10) in two parallel processes fromopposite ends. The matrix A does not change as long as the collocation con�gurationis frozen. However, its condition number increases with the number of collocationpoints. This increase puts a lower limit on the values of � one can handle in practice.Table 1Location of the transition layer at steady state." = 0:1 " = 0:05� x�1 x�as x�1 x�as1:0 � 10�1 0.72464 0.700427 0.86237 0.8502131:0 � 10�2 0.47486 0.470176 0.73755 0.7350841:0 � 10�3 0.24133 0.240724 0.62055 0.6199551:0 � 10�4 0.05265 0.052606 0.50485 0.5048261:0 � 10�5 0.00537 0.005504 0.38962 0.389696Table 1 gives the location of the transition layer at steady state, x�1, computedwith the algorithm (9) with N = 39 collocation points in each subdomain and a timestep �t = 0:02. The number x�as = 1� " ln(2=�), which is an asymptotic estimate ofx� (see Eq. (7)) is given for comparison. The initial conditions were usually obtainedby linear interpolation from the boundary data, but variations were made to test theanswers. The lower limit on " is determined by the fact that the computation time forthe algorithm (9) increases as " decreases. In x 2.4 we discuss an algorithm suitablefor long-time integration.Table 2 shows the impact of grid re�nement (the number of collocation points,N ) on the value of x�1. Table 2E�ect of grid re�nement (N) on x�1; " = 0:1, � = 1:0 � 10�3.N 15 19 29 39 49 59x�1 0.25576 0.24115 0.24166 0.24133 0.24140 0.241432.3. Neglecting Viscosity. In supersensitive boundary-value problems, the so-lution in the \tails" on either side of the transition layer is exponentially close to theprescribed boundary values, so the viscous term is exponentially small there. It istherefore tempting to assume that one can sacri�ce some accuracy in the computa-tion of the viscous term during the transient phase and still �nd the position of thetransition layer at steady state with a high degree of accuracy.An extreme form of this assumption underlies the approach where one constructsa �rst approximation by ignoring the viscous term altogether. Using a conservative�nite-di�erence scheme, such as Godunov, one constructs the entropy solution of theinviscid conservation law (" = 0) and takes this as a �rst approximation. One thenconstructs higher-order uniform approximations, for example by means of a hetero-geneous domain-decomposition method, using either a di�erent numerical scheme tosolve the full viscid problem in the interior of the transition layer or some otherapproximation of the viscous equation.The � method introduced by Brezzi et al. [30] is a more sophisticated nonlinearadaptive scheme based on the same assumption. Here, one replaces the boundary-



6 MARC GARBEY AND HANS G. KAPERvalue problem by�"�(uxx) + ut + (f(u))x = 0 on (�1; 1); u(�1; t) = 1 + �; u(1; t) = �1;(11)where � � ��;� is a smooth monotone function, �(s) = 0 if jsj � � and �(s) = sif jsj � � + � for some positive numbers � and � . This method has been applied toBurgers' equation [31] and the incompressible Navier-Stokes equations [32]. However,we claim that the � method cannot accurately predict the ultimate position of thetransition layer, at least for Burgers' equation on a �nite interval with Dirichlet data.This claim is supported by the following observations.Consider the results quoted in [31, Table II]. With few exceptions, they involverelatively large values of � (� is called � in [31]); in fact, � is typically greater than"�1=2 (" is called � in [31]) by one or two orders of magnitude. The viscous termis therefore always neglected, unless uxx is of the same order as "�1=2; that is, theviscous term is neglected everywhere except in the transition layer. If the � methodgave the correct position of the transition layer at steady state, then the same wouldcertainly be the case when we simply multiply the viscous term by a smooth functionof position, whose support is of order one and includes the transition layer. After all,in the latter case we account for the viscous term over a much broader region. Thesearguments lead us to consider the boundary-value problem�"H(x)uxx + ut + uux = 0 on (�1; 1); u(�1; t) = 1 + �; u(1; t) = �1;(12)instead of the boundary-value problem (11). Here, H is a smooth cut-o� function,H(x) = � 12 (1� tanh(�(x� x�(t) + �))) ; x < x�(t);12 (1� tanh(�(�x+ x�(t) + �))) ; x > x�(t):(13)We use a numerical approximation of x�(t) and choose the parameters � and � soH(x) = 1 if jx� x�(t)j < 12�; H(x) = 0 if jx� x�(t)j > 32�;to within machine accuracy (1 � 10�15). The algorithm (9) leads to the solution of Unfrom the equation�"HD2Un + Un � Un�1�t + Un�1Dun�1 = 0; n = 1; 2; : : : :(14)The results given in Table 3 (computed for " = 0:1 and � = 1:0 � 10�2, with � = 200)show that the algorithm (14) can give incorrect results for the position of the transitionlayer at steady state. (The correct value is x�1 = 0:47486, see Table 1.) The positionTable 3Location of the transition layer at steady state computed with the � method.� 0.1 0.2 0.3 0.4 0.5 0.6 0.7x�1 0.0056 0.0110 0.0174 0.0384 0.0923 0.1067 0.1565of the shock freezes too early during the transient phase. The actual moment offreezing depends on the size of the zone to the left of the transition layer (whereH � 0). The result improves as � increases, but for � = 0:8 the algorithm fails toconverge. (The position of the transition layer keeps oscillating between the regions



SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 7where H � 1 and H � 0.) On the other hand, if we include the missing part of theviscous term explicitly and use the algorithm�"HD2Un � "(1�H)D2Un�1 + Un � Un�1�t + Un�1Dun�1 = 0; n = 1; 2; : : : ;(15)instead of (14), we retrieve the correct position of the transition layer at steady state.This result demonstrates clearly that, when the problem is supersensitive, it is notadvisable to neglect the viscous term, even when that term is exponentially small.Note that the modi�ed algorithm (15) treats the second-order derivative explic-itly in the region where H � 0 and implicitly in the region where H � 1. The ideaof using a cuto� function to construct a composite algorithm is described in detail inour article [28]. The procedure o�ers a very general tool for the design of heteroge-neous domain decompositions in the framework of a �nite-di�erence approximation.However, since the algorithm (15) is based on a Tchebyshev pseudo-spectral approxi-mation, the partially explicit treatment of the viscous term forces a severe constrainton the time step that cannot be circumvented. For example, with " = 0:1 and N = 49collocation points per subdomain, the time step must be 10 times smaller than thetime step for the algorithm (9). The algorithm (15) is therefore certainly not practicalfor long-time integration.2.4. Long-Time Integration. The explicit treatment of the nonlinear termin the algorithm (9) imposes a severe constraint on the time step (CFL condition).The algorithm is therefore not suitable for long-time integration. The alternativeapproach commonly taken is to use a fully implicit scheme in combination with aNewton algorithm [33]. However, an implicit scheme can be expensive and is certainto increase interprocessor communication in a multiprocessing environment. If thesolution of the viscous conservation law is close to a certain pro�le function, as is thecase for Burgers' equation, at least after an initial transient, the following algorithmo�ers a more e�cient alternative.We start the integration of Eq. (4) at t = t0, say, when we have an approximatepro�le with a transition layer centered at x�. We construct the function u0,u0(x) = � tanh x� x�2" ;(16)which sati�es Burgers' equation exactly, and look for a solution u of the formu(x; t) = u0(x) + �v(x; t):(17)Then v must satisfy the nonlinear boundary-value problem�"vxx + vt + u0vx + u00v + �vvx = 0 on (�1; 1);v(�1; t) = ��1(1 + � � u0(�1)); v(1; t) = ��1(�1� u0(1)):We integrate this boundary-value problem for t > t0, using the algorithm�"D2V n + V n � V n�1�t + u0DV n + u00V n = ��V n�1DV n�1; n = 1; 2; : : : ;(18)and de�ne an approximation U of u for t > t0,U (x; t) = u0(x) + �V (x; t); t > t0:(19)



8 MARC GARBEY AND HANS G. KAPERWe proceed with the integration as long as the supremum of U (� ; t) � u0 remainsof the order of �. When this criterion is no longer met, at t = t1 say, we suspendthe integration, identify the point x� with the location of the center of the transitionlayer at t1, update the pro�le function u0, and continue the integration beyond t1.We repeat the procedure until the steady state is reached. Figure 1 shows a pro�lefunction u0 and the computed solution U (� ; t) at some time t. Note that the formeris monotone, the latter is not.
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SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 93. Two-Dimensional Case. Next, we consider Burgers' equation generalizedto two dimensions,�"�u+ut+uux+�uuy = 0 on (�1; 1)�(��; �); ujx=�1 = 1+�; ujx=1 = �1:(20)We assume periodicity in y (period 2�). The perturbation � may vary with y; itsFourier expansion is � � �(y) = �0Xk2Z �keiky:(21)The coe�cients �k, as well as the pre-factor �0, are independent of y. The pre-factor�0 is arbitrarily small positive and de�ned in such a way that �0 = 1 and �k = O(1)as �0 # 0 for k = �1;�2; : : : . The order relation (3) between � and ", which musthold uniformly in y, implies that�0 = Os(e�a=") as �0; " # 0;(22)for some a 2 (0; 1). We show in x 3.1 that, under these conditions, the averageposition of the transition layer (averaged over y) depends supersensitively on thesmall parameters " and �0. In x 3.2 we brie
y review the spatial approximation. x 3.3is devoted to the integration procedure.3.1. Pro�le Function. The algorithmwe propose for the solution of the boundary-value problem (20) is again based on the assumption that the solution is close to aknown pro�le function. Our goal in this section is to show that, under the conditionsgiven above, the pro�le function is asymptotically independent of y and again givento leading order by the hyperbolic tangent, as in Eq. (5).We introduce the constant x� 2 (0; 1) such that x� � 1� " ln(2=�0) as " # 0. Wede�ne the function u0, u0(x) = � tanh x� x�2" ;(23)and look for a pro�le function ' of the form'(x; y) = u0(x) + v(x; y):(24)Because u0 satis�es Burgers' equation, v must satisfy the di�erential equation�"�v + u0vx + u00v + �u0vy + vvx + �vvy = 0;(25)together with the boundary conditionsvjx=�1 = � � �0; vjx=1 = 0:(26)The linearized equation,`(v) � �"�v + u0vx + u00v + �u0vy = 0;(27)has a solution, `(u00) = 0, so we reduce the order by substitutingv = u00w:(28)



10 MARC GARBEY AND HANS G. KAPERThen w must satisfy the equation�"�w � u0wx + �u0wy = 0;(29)together with the boundary conditionswjx=�1 = (� � �0)=u00(�1); wjx=1 = 0:(30)We estimate w by means of the coe�cients in its Fourier expansion,w(x; y) =Xk2Zwk(x)eiky:(31)The leading coe�cient w0 is the solution of the boundary-value problem�"w000 � u0w00 = 0 on (�1; 1); w0(�1) = 0; w0(1) = 0:(32)so w0 = 0. Note that this result is a direct consequence of the fact that we havede�ned x� in terms of the average �0 in Eq. (23); any other de�nition leads to aninhomogeneous boundary-value problem, whose solution w0 does not vanish.The remaining coe�cients wk, k = �1;�2; : : : , are found from the boundary-value problem�"w00k � u0w0k + ("k2 + i�ku0)wk = 0; wk(�1) = �0�k; wk(1) = 0:(33)This is a classical turning-point problem, as u0 changes sign in the interval (�1; 1).The asymptotic behavior of wk as " # 0 can be found by the method described in [3,x 3.E],wk(x) � hckei�kx + �1� cke�i�k� e�(1+x)=" + �0� ckei�k� e�(1�x)="iwk(�1):(34)The coe�cient ck is such that the functionalL[w] = 12 Z 1�1 �"w02 + ("k2 + i�ku0)w2� exp�1" Z x0 u0(�) d�� dx(35)has a critical point at w = wk, @L[wk]@ck = 0:(36)Notice that the di�erential equation (33) is the Euler equation of the functional L;the Neumann boundary conditions w0k(�1) = 0 are the natural boundary conditionsassociated with L.Obviously, �nding an explicit expression for ck is out of the question. The bestwe can aim for is an asymptotic expansion as " # 0, and even here we must resortto computational assistance. Using the symbolic manipulation language MAPLE, we�nd ck � e�(x�+1)="(1 + �2)"2k2 e�i�k(1+2x�) as " # 0:(37)The �rst term in the brackets in Eq. (34) represents the regular part of the asymptoticbehavior of wk, which dominates in the interior; the remaining two terms represent



SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 11the singular part, which dominates near the endpoints of the interval. Since we areinterested in the transition layer, which is located in the interior, we ignore the singularpart and take only the regular part, wk(x) � ckwk(�1)ei�kx. That is, we takevk(x) � �0�ke�(1+x�)="(1 + �2)"2k2 u00(x)u00(�1) ei�k(1�2x�+x) as " # 0:(38)If we use the asymptotic approximationu00(x)u00(�1) = 1� tanh2((x� x�)=(2"))1� tanh2((�1 � x�)=(2")) � 1� tanh2((x� x�)=(2"))4e�(1+x�)=" ;we obtain the asymptotic expressionvk(x) � �0�k4(1 + �2)"2k2 ei�k(1�2x�+x) �1� tanh2 x� x�2" � :(39)This result implies that the Fourier series of v, as well as those of vx and vy , converge.Furthermore, kvk1 and kvyk1 are O(�0"�2).Finding the asymptotic behavior of kvxk1 is less obvious. It follows from Eq. (34)that w0k(x) � ckei�kx as " # 0, at least for x in the interior of the domain. Therefore,v0k(x) = (u00wk)0(x) � (u000wk)(x) � "�1(u00wk)(x) = "�1vk(x). Hence, kvxk1 =O(�0"�3) as �0; " # 0.Since �0 = Os(e�a=") for some a 2 (0; 1), we have �0"�p = Os(e�a0=") (p = 2; 3)for any a0 2 (0; a), so any solution v of Eq. (27) which satis�es the boundary con-ditions (26) is transcendentally small. The residue vvx + �vvy , which was ignoredin the transition from the nonlinear equation (25) to the linear equation (27) is like-wise transcendentally small and, in fact, O(�20"�5), so we also have an a posteriorijusti�cation for the linearization.These arguments motivate the choice of u0, which depends only on x, as thepro�le function in the design of the numerical algorithms for Eq. (20).3.2. Spatial Approximation. The spatial approximation is again based on adomain decomposition with two non-overlapping subdomains on either side of they-averaged location of the center of the transition layer. On each subdomain we usean adaptive pseudo-spectral method in the x direction and a �nite-di�erence methodin the y direction. The pseudo-spectral method is the same as in the one-dimensionalcase; it uses Tchebychev polynomial collocation with Nx collocation points.Since the transition layer is close to a plane parallel to the x axis, there is noneed to resort to an adaptive grid in the y direction. For our numerical experimentswe chose a regular grid with mesh width h = 2�=Ny and a sixth-order central �nite-di�erence approximation of uyy and uy. The choice may seem inconsistent with thespectral approximation in the x direction; a more obvious choice would be a Fourierapproximation in the y direction. Theoretically, the �nite-di�erence approximationin the y direction restricts the accuracy of the approximation for a regular problem(" = Os(1)) to sixth order, less than the accuracy guaranteed by the pseudo-spectralapproximation in the x direction. However, as the transition layer is close to a planeparallel to the x axis, it is relatively easy to keep the numerical error in the �nite-di�erence approximation of the term "uyy smaller than the numerical error in thepseudo-spectral approximation of the term "uxx with a moderate number of dis-cretization points Ny. There is, therefore, no need to use a better approximation, like



12 MARC GARBEY AND HANS G. KAPERthe Fourier approximation, for the term "uyy. Furthermore, the spectral radius of D2yis smaller with sixth-order �nite di�erences than with Fourier di�erentiation. Thisdi�erence implies an additional advantage for a �nite-di�erence approximation whenthe y derivatives are treated explicitly [34].3.3. Integration for Times of Order One. We extend the Euler scheme (9)to two dimensions as follows:�"D2xUn+ Un � Un�1�t = "D2yUn�1+Un�1DxUn�1+�Un�1DyUn�1; n = 1; 2; : : : :(40)Here, Dx is the pseudo-spectral di�erential operator with Tchebychev polynomials,Dy the �nite-di�erence operator with sixth-order central �nite di�erences.The algorithm (40) has several features that make it readily parallelizable. First,the approximations DyUn�1 and D2yUn�1 are taken explicitly, so the variable y isonly a parameter. Second, because we are using �nite-di�erence approximations, wehave only local data dependencies. This latter point especially o�ers a signi�cantadvantage over a spectral method, which uses global interpolation.Table 5 shows the results for the boundary-value problem (20) with � = 1, " = 0:1and piecewise constant boundary data with �0 = 1:0 � 10�2,u(�1; y) = 8<: 1:01��� if � � � y < �12�;1:01 +�� if � 12� � y < 12�;1:01��� if 12� � y < �:(41)The algorithm (40) was applied with Nx = 39 collocation points per subdomain inthe x direction and Ny = 32 interpolation points in the y direction. The table givesthe y-averaged location of the transition layer at steady state, <x�1>, as well as themaximum deviation of the center of the transition layer from its y-averaged location,�x�; that is, x�1(y) varies between <x�1> ��x� and <x�1> +�x�. These resultsTable 5Location of the transition layer at steady state; boundary data (41).�� <x�1> �x�0:25 � 10�2 0.4758 1:3114 � 10�20:50 � 10�2 0.4759 2:3584 � 10�21:0 � 10�2 0.4758 4:8865 � 10�21:5 � 10�2 0.4750 7:8632 � 10�22:0 � 10�2 0.4738 9:3250 � 10�23:0 � 10�2 0.4700 15:688 � 10�2show that the algorithm (40) is extremely e�ective for the boundary-value problem.As �� increases, �x� grows approximately linearly with ��. The graph of U � u0maintains its overall shape, so its width (which measures �x�) varies in proportionto its height (which measures kU � u0k1). The numerical results therefore indicatealso that kU � u0k1 grows approximately linearly with ��. This conclusion matchesthe results of the asymptotic analysis in x 3.1, in particular Eq. (39), where it wasshown that vk is proportional to �k.Results for a much harder case are presented in Table 6. The parameters � and" are �xed as before, � = 1 and " = 0:1, but this time the data at the left boundaryare sharply peaked at the midpoint,u(�1; y) = 1:005+ (��)e�20(1�cosy); �� < y < �:(42)



SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 13The algorithm (40) was again applied with Nx = 39 collocation points per subdomainin the x direction and Ny = 32 interpolation points in the y direction. The table gives,in addition to the values of <x�1> and �x�, the asymptotic value x�as = 1�" ln(2=�0).The average location of the transition layer is predicted very well by the asymptotics.Table 6Location of the transition layer at steady state; boundary data (42).�� <x�1> x�as �x�0:25 � 10�2 0.40808 0.40811 0:27278 � 10�20:50 � 10�2 0.41277 0.41241 0:37231 � 10�21:0 � 10�2 0.42096 0.42052 0:92263 � 10�22:0 � 10�2 0.43573 0.43506 1:4589 � 10�23:0 � 10�2 0.44854 0.44782 2:3924 � 10�2Again, the maximum deviation �x� grows with ��, although not linearly as in thecase of the step boundary data (41).Table 7 shows the impact of grid re�nement (the number of collocation points persubdomain, Nx, and the number of discretization points, Ny) on the computed valueof x�1(y) for the problem with boundary data (41), �� = 0:01.Table 7E�ect of grid re�nement (Nx, Ny) on <x�1> (upper entries) and �x� (lower entries); bound-ary data (41) with �� = 0:01.Ny Nx = 19 Nx = 29 Nx = 39 Nx = 49 Nx = 598 0.47848 0.47653 0.47523 0.47557 0.475474.7396 10�2 4.8375 10�2 4.8902 10�2 5.2615 10�2 5.2251 10�216 0.47807 0.47614 0.47610 0.47478 0.475164.7396 10�2 5.8062 10�2 4.8849 10�2 4.9273 10�2 4.9518 10�232 0.47883 0.47611 0.47578 0.47536 0.474814.7396 10�2 4.8374 10�2 4.8864 10�2 4.9267 10�2 4.9516 10�264 0.47847 0.47610 0.47561 0.47513 0.475244.7396 10�2 4.8372 10�2 4.8867 10�2 4.9266 10�2 5.2280 10�2An obvious way to parallelize the algorithm (40) is to partition the interval (��; �)into subintervals of equal length 2�=Ny and map this partition onto a ring of proces-sors. Thus, one can achieve high speedups on a Paragon using nonblocking commu-nications. If each processor covers at least four mesh points in the y direction, onlynearest-neighbor communication is needed. Table 8 gives ample evidence that thealgorithm (40) is highly scalable; doubling the number of processors with the problemsize results in almost identical CPU times.Table 8CPU time for 1,000 time steps on the Paragon XP/S as a function of the number of processors(P ) and the size of the problem (measured by Ny); Nx = 49.Ny P = 1 P = 2 P = 4 P = 8 P = 1632 129.16 65.88 33.91 17.4364 252.85 130.02 65.85 33.85 17.45128 519.05 257.85 129.68 65.85 33.92256 515.01 257.49 129.77 65.93Additional parallelism can be introduced by decomposing the domain in the xdirection. However, our experience with a similar algorithm for combustion problems



14 MARC GARBEY AND HANS G. KAPERindicates a potentially signi�cant decrease (as much as 70%) in the e�ciency of thealgorithm [35].In general, the algorithm (40) is very well adapted to the quasi one-dimensionalstructure of the transition layer. The algorithm predicts the location of the transitionlayer at steady state with a signi�cant accuracy. The time step is of the same orderof magnitude as for the one-dimensional analog (9).3.4. Long-Time Integration. The algorithm (40) needs to be modi�ed forlong-time integration. We distinguish between the cases � = 0 and � 6= 0.If � = 0, we use an algorithm similar to the one described in x 2.4. We start theintegration of Eq. (20) at t = t0, say. We identify the point x� with the location ofthe zero of the approximation U of u, averaged over y, at t = t0 and de�ne the pro�lefunction u0 as in Eq. (23), u0(x) = � tanh x� x�2" ;(43)Then we integrate the nonlinear boundary-value problem�"�v + vt + u0vx + u00v + �0"�2vvx = 0 on (�1; 1)� (��; �)forward in time, subject to the boundary conditionsvjx=�1 = ��10 "2(1 + � � u0(�1)); vjx=1 = ��10 "2(�1 � u0(1));using the algorithm�"D2xV n + V n � V n�1�t + u0DxV n + u00V n = "D2yV n�1 � �0"�2V n�1DxV n�1;(44)for n = 1; 2; : : : . We de�ne the approximation U of u,U (x; y; t) = u0(x) + �0"�2V (x; y; t);(45)and integrate as long as the supremum of U (� ; � ; t)�u0 remains of the order of �0"�2.When this criterion is no longer met, at t = t1 say, we suspend the integration, identifythe point x� with the location of the center of the transition layer (averaged over y),and update the pro�le function u0. We repeat the procedure until the steady state isreached.The time step for the algorithm (44) is limited by the (explicit) term "D2yV n�1,�t < c(2�=Ny)2=", for some constant c < 12 . This limitation is not too severe, as " isvery small and the variation of the solution in the y direction is exponentially small,so Ny need not be large.If � 6= 0, the situation becomes more complicated. One can, of course, extend thealgorithm (44) trivially by incorporating the convective term in the right member,�"D2xV n + V n � V n�1�t + u0DxV n + u00V n= "D2yV n�1 � �0"�2V n�1DxV n�1 � �u0DyV n�1 � ��0"�2V n�1DyV n�1;(46)



SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 15for n = 1; 2; : : :. Representative results obtained in this way for the boundary-valueproblem (20) with � = 1 and " = 0:02 are given in Table 9. The boundary data areagain piecewise constant, as in Table 5, but with �0 = 1:0 � 10�6,u(�1; y) = 8<: 1 + 1:0 � 10�6 ��� if � � � y < �12�;1 + 1:0 � 10�6 +�� if � 12� � y < 12�;1 + 1:0 � 10�6 ��� if 12� � y < �:(47)The algorithm (46) was applied with Nx = 39 collocation points per subdomain inthe x direction and only Ny = 16 interpolation points in the y direction. We observeTable 9Location of the transition layer at steady state; boundary data (47).�� <x�1> �x�1:0 � 10�6 0.7099 < 1:0 � 10�41:0 � 10�5 0.7099 < 1:0 � 10�41:0 � 10�4 0.7101 3:9 � 10�30:5 � 10�3 0.7122 1:9 � 10�21:0 � 10�3 0.7162 3:0 � 10�2that the average location of the transition layer does not change appreciably as longas �� is of the same order as the average perturbation �0. As �� increases, theperturbation is no longer small compared with �0, and the asymptotic results of x 3.1do not necessarily apply. Indeed, �x� does not appear to vary linearly with ��, aswas the case in Table 6.
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SUPERSENSITIVITY FOR GENERALIZED BURGERS EQUATIONS 17one-dimensional case. The algorithm would be of the following type:�"D2xV nk + V nk � V n�1k�t + u0DxV nk + (i�ku0 + "k2)V nk + u00V n = ��0"�2Wn�1k ;(48)for n = 1; 2; : : : ; Dy is the matrix of di�erentiation with respect to y in Fourier space,and Wk is some approximation to the kth Fourier coe�cient of vvx + �vvy .This algorithm parallelizes with respect to the Fourier modes. It has been appliedto a problem involving a propagating combustion front in a moving 
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